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Abstract: Luminescent solar concentrators (LSCs) are considered promising photovoltaic (PV) de-
vices to circumvent practical issues of applying conventional solar panels to the built environment.
However, LSCs suffer from low power conversion efficiencies (PCEs) (typically <2% for devices of
over 1 m?), despite numerous efforts having been made to develop novel luminescent materials and
optical techniques. In this report, we proposed to utilize photothermal (PT) energy of the LSCs to
further improve the PCE. We conducted a preliminary investigation on the PV and PT properties
of an LSC with dimensions of 300 mm x 300 mm X 5 mm. The results showed that the PT power
(27.05 W) was much higher than the PV power (2.12 W). Further analysis indicated that the PCE
could reach 3.41% for a device of 1 m2.

Keywords: luminescent solar concentrator; photovoltaic; photothermal; ray-tracing simulation

1. Introduction

The transformation from conventional cities that are based on fossil energy to zero-
carbon cities that are based on renewable energy requires the integration of power facilities
that are capable of harvesting and producing energy with the built environment [1-3].
Photovoltaic (PV) devices that convert solar energy directly to electrical energy play im-
portant roles in achieving this transformation [4-7]. However, conventional solar panels
have limitations when being applied to buildings. They have limited varieties of shapes
and colors for building integration and require limited weather conditions for optimal
operation [8-11]. Luminescent solar concentrators (LSCs) emerged to address these issues
with conventional solar panels. Although conventional solar cells can be designed to dif-
ferent shapes and colors to meet the building architecture requirements, these designs are
typically high cost. One of the biggest advantages of using LSCs is that low-cost solar cells
can be utilized with luminescent waveguides to achieve different architecture requirements.
It has been proven that LSCs can be utilized as exterior and interior building parts [12-14]
and operated under different light conditions [15]. A typical LSC consists of a luminescent
waveguide with solar cells attached to the edge [16-18]. The operational mechanism of
LSCs is illustrated in Figure 1. The sunlight is absorbed by the luminophores and con-
verted to luminescent light (i.e., wavelength-shifting effect [19-23]), which transports to
the edge of the luminescent waveguide through successive total internal reflection (TIR).
The highly intensive luminescent light from the edge of the luminescent waveguide allows
the edge-attached solar cells to produce electrical energy much higher than the electrical
energy produced by the solar cells that are not attached to the luminescent waveguide.
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Figure 1. (a) A picture of luminescent waveguide under ultraviolet (UV) light, showing highly intensive luminescent light
from the edge of the luminescent waveguide, and (b) operational mechanism of LSCs. Incident photons are absorbed and
converted to luminescent photons, which transport to the edges of the luminescent waveguide through successive TIR and
are delivered to solar cells.

To date, numerous studies on the LSCs have focused on developing novel luminescent
materials [24-26] and optical techniques [27-30] to enhance the performance of LSCs. How-
ever, only a handful of reports demonstrated devices with power conversion efficiencies
(PCEs) (>5%) and/or high concentration ratios (>2) at large scales [31-35]. According to a
theoretical study, LSCs are subjected to over 50% photon loss due to the luminophore self-
absorption, host matrix absorption, and waveguide escape [36]. Except for the waveguide
escape (i.e., direct photon loss through waveguide escape cone and surface scattering [37]),
luminophore-self-absorption and host matrix absorption produce photothermal (PT) en-
ergy inside the luminescent waveguide. The PT energy can be potentially utilized and
converted to electrical energy so that the PCE of LSCs can be further improved.

In this study, we conducted a preliminary investigation on the PT properties of an LSC
with dimensions of 300 mm x 300 mm x 5 mm. We found that the PT power (27.05 W) of
the LSC was significantly higher than the PV power (2.12 W). For an LSC of 1 m?, with the
conversion of PT energy to electrical energy, the PCE could be enhanced by 81% and the
overall PCE could reach 3.41%.

2. Experimental
2.1. Device Fabrication

The fabrication of the LSC consists of the preparation of the luminescent waveguide
and the attachment of solar cells. The procedures associated with detailed schematics are
provided in our previous reports [37-39]. Briefly, the luminescent waveguide was prepared
from the two-step polymerization of methyl methacrylate (MMA) (Sigma-Aldrich, St. Louis,
MO, USA) with 0.1 w/w% azobisisobutyronitrile (AIBN) (Sigma-Aldrich) and 60 ppm N,N’-
bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-3,4,9,10-perylenetetracarboxylic diimide
(R305) (TCI America, Portland, OR, USA). The raw luminescent waveguide was mechani-
cally processed to a 300 mm x 300 mm x 5 mm slab. Polycrystalline silicon (p-Si) solar cells
(eBay) that matched the size of the edge of the luminescent waveguide (300 mm x 5 mm)
were utilized. They were connected in parallel and glued using optically clear adhesives to
the four edges of the luminescent waveguide. There were no encapsulations for the solar
cells and the LSC.

2.2. Device Characterization

The AM1.5G sunlight (1000 W-m~2) was provided by an OAI class AAA solar simula-
tor, which was applied for the solar cells and the LSC. The I-V curves were measured using
a Keithley 2401 Sourcemeter. The external quantum efficiencies (EQEs) were measured
using an Enlitech QE-R3011 system. The emission spectrum of the luminescent waveguide
was measured using an ISS PC1 photon-counting spectrofluorometer.
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2.3. Ray-Tracing Simulation

The ray-tracing simulation was performed using a commercial Monte Carlo ray-
tracing service provided by Solarathlon. The service was customized to obtain the heat
map of the luminescent waveguide. About 1.7 x 1010 photons across the AM1.5G solar
spectrum (280—4000 nm) were simulated.

3. Results and Discussion
3.1. PV Properties

We first reported the PV properties of the parallel-connected solar cells and the LSC.
Figure 2a shows the I-V curves of the solar cells and the LSC. Before being attached to
the edge of the luminescent waveguide, the solar cells exhibited short-circuit current (Isc)
of 1.98 A, open-circuit voltage (Voc) of 0.62 V, and fill factor (FF) of 0.76, which led to
maximum power (Pmax) of 0.93 W and PCE of 15.5%. After the solar cells were attached to
the edge of the luminescent waveguide, the resulting LSC exhibited Isc of 4.67 A, Voc of
0.64 V, and FF of 0.71, which led to Pmax of 2.12 W and PCE of 2.36%. According to these
results, the geometric gain (G, defined as the area of the LSC relative to that of the solar
cells) and the concentration ratio (C, defined as the maximum power of the LSC relative
to that of the solar cells) of the LSC were 15 and 2.28, respectively. Although the PCE of
the LSC was much lower than that of the solar cells, the electrical power from the LSC
was more than twice (C = 2.28) that from the solar cells, which indicated that the LSC
could reduce the cost of the PV devices by using fewer solar cells while producing more
electrical power.
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Figure 2. (a) I-V curves of the parallel-connected solar cells and the LSC, (b) edge emission spectrum
of the luminescent waveguide (normalized to 0.8) and EQE of the solar cells, (¢) EQE of the LSC, and
(d) photostability of the LSC.

We also measured the edge emission spectrum of the luminescent waveguide and
compared it with the EQE of the solar cells. As depicted in Figure 2b, the edge emission
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maximized at 642 nm, which was close to the highest EQE value (ca. 0.9) of the solar cells.
It is noted that the PCE of the LSC can be further improved using luminophores with
more red-shifted emission spectra compared with R305. We also measured the EQE of the
LSC. Figure 2c signifies that the EQE was strong (up to 0.35 or 35%) before 650 nm but
weak (<0.05 or 5%) after 650 nm. The strong EQE was due to the absorption of R305 [15],
while the weak EQE was due to the scattering of the luminescent waveguide, which was
consistent with previous results [40].

We also studied the photostability of the LSC. The PCE of the LSC was intermittently
measured up to 512 days. Figure 2d demonstrates that the PCE of the LSC is 2.17% after
256 and 512 days, which is an 8% drop compared with the initial PCE of 2.36%. Based on
the results, we believed that the LSC could sustain at least 90% of its initial PCE, and its
lifetime could be comparable to commercial solar panels.

3.2. PT Properties

After obtaining the PV properties of the LSC, we then investigated the PT properties
by performing a Monte Carlo ray-tracing simulation on the luminescent waveguide. The
PT energy consists of the Stokes’ loss (i.e., loss of the excitation energy) of the luminophores
and the photon absorbance of the host matrix. In the simulation, we configured the LSC
with 5 layers of equal thickness and simulated the heat map of each layer, as shown in
Figure 3. The results indicated that the PT power was produced uniformly on each layer.
The bottom layer (L1) produced the least PT power (2.23 W) and the top layer (L5) produced
the most PT power (10.8 W), which were 8.2% and 39.9% of the total PT power (27.05 W),
respectively. The results also suggested that the total PT power (27.05 W) of the luminescent
waveguide was significantly higher than the PV power (i.e., Pmax) (2.12 W) of the LSC.
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Figure 3. (a) Layer configuration of the LSC, and (b-f) heat maps of the layers (color bars with the unit of W).

3.3. Projected Performance

We also used the Monte Carlo ray-tracing simulation to project the performance of the
LSC of up to 1 m?. Figure 4a shows a nearly linear relationship between the PV power (i.e.,
Pmax) and the area of the LSC. For a device of 0.09 m?, the calculated Pmax was 2.09 W,
which was consistent with the Pmax in our experiment (2.12 W). When the area of the
LSC was increased to 1 m2, the Pmax was increased to 18.8 W, which corresponded to a
PCE of 1.88%. Figure 4b depicts the PT power of each layer in the luminescent waveguide
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with increasing area of the LSC. The results indicated a nearly linear relationship between
the PT power of each layer and the area of the LSC. The results were consistent with our
experiment, suggesting that the PT power increased from L1 to L5. For an LSC of 1 m?,
the total PT power was 305 W, which was more than 15 times the Pmax (18.8 W). Consid-
ering a 5% thermoelectric efficiency, the total electrical power could be as high as 34.1 W
(=18.8 W + 305 W x 5%) for an LSC of 1 m?, as signified in Figure 4c. Figure 4d demon-
strates that the PCE of the LSC could be enhanced by 81% (=305 W x 5%/18.8 W) and the
overall PCE could reach 3.41%.
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Figure 4. (a) Relationship between the Pmax and the area of the LSC, (b) the PT power of each layer
in the luminescent waveguide and the total PT power with increasing the area of the LSC, (c) the PV
and/or PT-based electrical power of the LSC with increasing the area of the LSC, and (d) the PCE
enhancement and the overall PCE with increasing the area of the LSC.

4. Conclusions

In this report, we conducted a preliminary investigation on the PT properties of an
LSC with dimensions of 300 mm x 300 mm x 5 mm. The PV properties were measured,
and the LSC exhibited a PCE of 2.36% with a C of 2.28. The PT properties were studied
using the Monte Carlo ray-tracing simulation. The results showed increasing PT power
from the bottom to the top layer of the LSC with a total PT power of 27.05 W. We also
investigated the projected performance of the LSC of up to 1 m?. For a device of 1 m?, the
PV and PT-based electrical power could be as high as 34.1 W, corresponding to an overall
PCE of 3.41%. The utilization of PT energy paves a new way to improve the performance
of LSCs.
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